Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter.

نویسندگان

  • Jun Lu
  • Thomas C Jhou
  • Clifford B Saper
چکیده

Recent evidence suggests that dopamine plays an important role in arousal, but the location of the dopaminergic neurons that may regulate arousal remains unclear. It is sometimes assumed that the dopaminergic neurons in the ventral tegmental area that project to the prefrontal cortex and striatum may regulate the state of arousal; however, the firing of these dopaminergic neurons does not correlate with overall levels of behavioral wakefulness. We identified wake-active dopaminergic neurons by combining immunohistochemical staining for Fos and tyrosine hydroxylase (TH) in awake and sleeping rats. Approximately 50% of the TH-immunoreactive (TH-ir) cells in the ventral periaqueductal gray matter (vPAG) expressed Fos protein during natural wakefulness or wakefulness induced by environmental stimulation, but none expressed Fos during sleep. Fos immunoreactivity was not seen in the substantia nigra TH-immunoreactive cells in either condition. Injections of 6-hydroxydopamine into the vPAG, which killed 55-65% of wake-active TH-ir cells but did not injure nearby serotoninergic cells, increased total daily sleep by approximately 20%. By combining retrograde and anterograde tracing, we showed that these wake-active dopaminergic cells have extensive reciprocal connections with the sleep-wake regulatory system. The vPAG dopaminergic cells may provide the long-sought ascending dopaminergic waking influence. In addition, their close relationship with the dorsal raphe nucleus will require reassessment of previous studies of the role of the dorsal raphe nucleus in sleep, because many of those experiments may have been confounded by the then-unrecognized presence of intermingled wake-active dopaminergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ebf2 is required for development of dopamine neurons in the midbrain periaqueductal gray matter of mouse.

Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During ...

متن کامل

The Response of Ventral Tegmental Area Dopaminergic Neurons to Bupropion: Excitation or Inhibition?

Introduction: Antidepressants can modulate brain monoamines by acting on pre-synaptic and postsynaptic receptors. Autoreceptors can reduce the monoamines effect on the somatodendritic or pre-synaptic regions despite its postsynaptic counter effects. The direct effect of some antidepressants is related to its temporal and spatial bioavailability in the vicinity of these receptors (still a matter...

متن کامل

A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus

The largest synaptic input to the sleep-promoting ventrolateral preoptic area (VLPO) [1] arises from the lateral hypothalamus [2], a brain area associated with arousal [3-5]. However, the neurochemical identity of the majority of these VLPO-projecting neurons within the lateral hypothalamus (LH), as well as their function in the arousal network, remains unknown. Herein we describe a population ...

متن کامل

Comparing the analgesic effects of periaqueductal gray matter injection of orexin A and morphine on formalin- induced nociceptive behaviors.

Introduction: Orexin-A and B (Hypocretin 1 and 2) are neuropeptides that are mostly expressed in the posterior and lateral hypothalamus (LH). Intracisternal (ICV) and intratechal (IT) injections of orexin-A (hypocretin-1) have been shown to elicit analgesic responses in formalin test. However, the locations of central sites that may mediate these effects have not been clearly elucidated. Ore...

متن کامل

Alternating vigilance states: new insights regarding neuronal networks and mechanisms.

Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep; PS), it is accepted that sleep is an active process. PS is characterized by EEG rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs, in contrast to slow-wave sleep (SWS, also known as non-REM sleep) identified by the presence of delta waves. Here, we rev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2006